New paper published in the Journal of Cave and Karst Studies on vertebrates in east Tennessee caves

A paper on the vertebrate fauna found in caves of east Tennessee was recently published in the journal Journal of Cave and Karst Studies. The full citation and abstract are below.

Niemiller ML, Zigler KS, Stephen CDR, Carter ET, Paterson AT, Taylor SJ, & Engel AS. 2016. Vertebrate fauna in caves of eastern Tennessee within the Appalachians karst region, USA. Journal of Cave and Karst Studies 78: 1–24.

More than one-fifth of the documented caves in the United States occur in Tennessee. The obligate subterranean biota of Tennessee is rich and diverse, with 200 troglobionts reported from over 660 caves. Fifty troglobionts are known from just 75 of the 1,469 caves in the Appalachian Valley and Ridge physiographic province of eastern Tennessee. Tennessee’s Valley and Ridge has been under-sampled relative to other karst areas in the state, limiting our knowledge of cave and karst species diversity and distributions and compromising our ability to identify habitats and species potentially at risk from anthropogenic threats, such as urban sprawl near the metropolitan area of Knoxville. Knowledge of nontroglobiontic species inhabiting caves, including vertebrates, is particularly sparse in this region. Although caves have long been recognized as critical habitats for several bat species, the importance of caves for other vertebrate taxa has received less attention. Caves are important habitats for many other nontroglobiontic vertebrates and should be considered in the management and conservation of these species. Our decade-long study bioinventoried 56 caves in 15 counties and begins to address knowledge gaps in distributions and cave use by vertebrates in the Valley and Ridge and adjacent Blue Ridge Mountains of eastern Tennessee within the Appalachians karst region. In addition, we conducted a thorough review of the literature and museum databases for additional species-occurrence records in those provinces of eastern Tennessee. From these sources, we present an annotated list of 54 vertebrate taxa, including 8 fishes, 19 amphibians (8 anurans and 11 salamanders), 6 reptiles, 3 birds, and 18 mammals. Three species are included on the IUCN Red List of Threatened Species, while six species are at risk of extinction based on NatureServe conservation rank criteria. Ten bat species are known from 109 caves in 24 eastern Tennessee counties. Our bioinventories documented five bat species in 39 caves, including new records of the federally endangered Gray Bat (Myotis grisescens). We observed visible evidence of white-nose syndrome caused by the fungal pathogen Pseudogymnoascus destructans at four caves in Blount, Roane, and Union counties. We documented two new localities of the only troglobiontic vertebrate in the Valley and Ridge, the Berry Cave Salamander (Gyrinophilus gulolineatus). Despite these efforts, significant sampling gaps remain—only 7.7% of known caves in the Valley and Ridge and Blue Ridge Mountains of eastern Tennessee have records of vertebrate-species occurrence. Moreover, few caves in eastern Tennessee have experienced repeated, comprehensive bioinventories, with the exception of periodic surveys of hibernating bats at selected caves. Future bioinventory efforts should incorporate multiple visits to individual caves, if possible, and more efforts should focus on these understudied areas of eastern Tennessee.

New paper published in Copeia on life history and demography of the Big Mouth Cave Salamander

A paper on the life history and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides) was recently published in the journal Copeia. The full citation and abstract are below.

Niemiller ML, Glorioso BM, Fenolio DB, Reynolds RG, Taylor SJ, & Miller BT. 2016. Growth, survival, longevity, and population size of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides) from the type locality in Grundy County, Tennessee, USA. Copeia 104: 35-41.

Salamander species that live entirely in subterranean habitats have evolved adaptations that allow them to cope with perpetual darkness and limited energy resources. We conducted a 26-month mark–recapture study to better understand the individual growth and demography of a population of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides). We employed a growth model to estimate growth rates, age at sexual maturity, and longevity, and an open population model to estimate population size, density, detectability, and survival rates. Furthermore, we examined cover use and evidence of potential predation. Individuals probably reach sexual maturity in 3–5 years and live at least nine years. Survival rates were generally high (.75%) but declined during the study. More than 30% of captured salamanders had regenerating tails or tail damage, which presumably represent predation attempts by conspecifics or crayfishes. Most salamanders (.90%) were found under cover (e.g., rocks, trash, decaying plant material). Based on 11 surveys during the study, population size estimates ranged from 21 to 104 individuals in the ca. 710 m2 study area. Previous surveys indicated that this population experienced a significant decline from the early 1970s through the 1990s, perhaps related to silvicultural and agricultural practices. However, our data suggest that this population has either recovered or stabilized during the past 20 years. Differences in relative abundance between early surveys and our survey could be associated with differences in survey methods or sampling conditions rather than an increase in population size. Regardless, our study demonstrates that this population is larger than previously thought and is in no immediate risk of extirpation, though it does appear to exhibit higher rates of predation than expected for a species believed to be an apex predator of subterranean food webs.